Fetal alcohol syndrome and DiGeorge anomaly: critical ethanol exposure periods for craniofacial malformations as illustrated in an animal model

Author: Sulik, K. K.; Johnston, M. C.; Daft, P. A.; Russell, W. E.; Dehart, D. B.

Description: Acute maternal ethanl (alcohol) administration induces different craniofacial anomalies in the offspring of experimental animals, depending on the gestational day of teratogen exposure. Previous studies in our laboratories have illustrated the sequence of developmental changes leading to the typical fetal alcohol syndrome (FAS) craniofacial phenotype which results from teratogen exposure during gastrulation. These facial features are accompanied by deficiencies in median forebrain derivatives. Ethanol teratogenesis at this time apparently results in a loss of midline territory of the embryonic disc with little effects on neural crest-dependent laterally derived structures including the visceral arches. Acute ethanol exposure in mice 1 1/2 days later, at a time when neural crest cells are populating the frontonasal prominence and the visceral arches, results in a craniofacial phenotype that is similar to that noted in the DiGeorge anomaly or sequence. Sequential scanning electron microscopic analysis in our laboratory of embryos exposed on day 8 ½ have illustrated deficiencies in the developing facial prominences and the visceral arches. The developing forebrain and midbrain appear hypoplastic. We have also observed heart, great vessel, and thymus abnormalities in these fetuses. Histologic analyses indicate that a common pathogenetic basis for the above-mentioned (day 8 ½-induced) fetal alcohol effects appears to be an interference with the integrity of the cranial (including occipital) neural crest. Other discrete cell populations may also be involved since we have observed abnormalities in other regions, including placodal and closing membrane tissues.

This animal model provides evidence linking maternal ethanol abuse during the 3rd or 4th weeks of human gestation to the development in the conceptus of FAS or DiGeorge anomally craniofacial characteristics, respectively. As the DiGeorge anomaly has been noted in the offspring of alcoholic women, this animal model indicates that ethanol and/or its metabolities is, in these cases, the causative agent.

Subject headings: Animals; Brain, embryology; Ultrastructure; DiGeorge Syndrome, chemically induced, pathology; Disease Models, Animal; Embryo, Mammalian; Ethanol, toxicity; Facial Bones, abnormalities; Female; Fetal Alcohol Spectrum Disorders; Immunologic Deficiency Syndromes; Mice; Microscopy, Electron, Scanning; Pregnancy; Skull; Teratogens

Publication year: 1986

Journal or book title: American journal of medical genetics. Supplement

Volume: 25

Issue: S2

Pages: 97-112

Find the full text: https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.1320250614

Find more like this one (cited by): https://scholar.google.com/scholar?cites=12761916406843454210&as_sdt=1000005&sciodt=0,16&hl=en

Serial number: 3751

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.